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The barotropic shear layer in a rotating fluid is studied in a laboratory experiment.
Through the rotation of circular sections in the base and lid of a circular tank relative
to a background rotation of the entire system, a vertical layer of strong horizontal
shear develops, the Stewartson layer. Above a critical shear, the shear layer breaks up
through barotropic instability, which is an inertial instability. The flow then develops
a string of vortices along the shear zone. It will be shown that the transition from an
axisymmetric flow to regular vortices occurs through a Hopf bifurcation. Subsequent
transitions to more complex flows, such as modulated vortices, chaos and highly
irregular flow, will be presented briefly, while the main points of this paper are the
primary instability, steady vortices and their nonlinear dynamics. Among the issues
discussed is the sensitivity of the flow to the direction of the differential shear. The
experimental data will be used to test the ability of boundary layer theory and
quasi-geostrophic theory to predict the onset of instability and the range of unstable
wavenumbers.

1. Introduction
1.1. Outline

Shear-driven instabilities in rotating fluids are fundamental problems in fluid dy-
namics. The instability studied here, sometimes called barotropic instability, is the
instability of a rapidly rotating fluid subjected to a horizontal shear. When the shear
across a thin region becomes sufficiently large, the shearing flow becomes unstable
and the fluid tends to ‘roll up’ into vortices.

In this study, the nonlinear dynamics of the travelling vortices arising from the first
instability and subsequent bifurcations are investigated. This paper mainly presents
the global structure of the regime diagram, the instability of the basic axisymmetric
flow, equilibration to steady vortices, and subsequent mode transitions. Secondary
instabilities, such as the emergence of secondary oscillations and irregular flow are
discussed in a future companion paper (Part 2). The observed dynamics and bifurca-
tions are compared with those observed in related fluid experiments, such as a circular
shear layer, baroclinic waves in a rotating annulus, and the Taylor–Couette system.

The remainder of § 1 gives some background to barotropic instability and previous
studies of it. We will also mention some symmetry considerations in the context of ex-
pected bifurcations. After a description of the laboratory apparatus and experimental
and analysis procedures in § 2, the results are presented. First the global structure of



144 W.-G. Früh and P. L. Read

the regime diagram is discussed in § 3, followed by a discussion of the axisymmetric
flow and its instability in § 4 and steady vortices in § 5. The final section, § 6, discusses
the findings and puts them in context.

1.2. Background

Rotating shear layers occur in a variety of situations, from industrial to geophysical
applications. An example of an industrial application is the design of computer
hard disk drives (Humphrey & Gor 1993) where shear layers occur between the
rapidly rotating magnetic disc and the stationary housing. Such shear layers are
also an essential ingredient of the flow in the Earth’s outer core which gives rise
to the Earth’s magnetic field (Hollerbach 1996). It has also been proposed that the
prominent vortical features on the giant planets – of which the Great Red Spot on
Jupiter is only the best known – are a result of barotropic instability, e.g. Meyers,
Sommeria & Swinney (1989); Antipov et al. (1986); for alternative theories see Read
(1992).

In the oceans and atmosphere, barotropic instability plays an essential role in the
evolution of large-scale weather systems, such as at the end of the life cycle of
baroclinic waves and fully developed fronts (Schär & Davies 1990; Simmons &
Hoskins 1978), or in the breakup of tropical cyclones (Weber & Smith 1993). Recent
laboratory experiments by Read et al. (1992) on baroclinic waves in a rotating fluid
annulus which is subjected to a horizontal temperature gradient have suggested that
some forms of ‘structural vacillation’ may be caused by a barotropic instability of the
large-amplitude baroclinic wave. Structural vacillation is an oscillation of the wave
shape, which at first sight seems regular, yet cannot be described by low-dimensional
dynamics. Several studies (Früh & Read 1997; Guckenheimer & Buzyna 1983; Read
et al. 1992) have found that estimates of the attractor dimensions for structural
vacillation data did not converge to consistent results. Under certain conditions,
when a structural vacillation solution coexists with another wave solution for the
same forcing parameters, the small variation due to the structural vacillation may
lead to a metastable system with irregular switching between the two solutions (Früh
& Read 1997).

This study of the nonlinear dynamics of barotropic vortices aims at a better under-
standing of barotropically unstable systems and their relevance to observed flows in
the laboratory and atmosphere. Since Rossby waves due to baroclinic instability have
been shown to exhibit a rich variety of possible routes to low-dimensional chaos and
to high-dimensional and possibly stochastic behaviour, the question arises of whether
Rossby waves growing from an inertial instability of a rotating shear layer will show
similar bifurcation scenarios. For instance, homoclinic orbits appeared to play a large
role in the emergence of low-frequency modulations of baroclinic waves in the experi-
ments by Früh & Read (1997). Frequency locking was also relatively common in the
baroclinic annulus and had a very strong effect on the bifurcation sequences observed.
For instance, evidence for period-doubling bifurcations was restricted to flows which
were frequency locked in the sense that the wave drift and the wave amplitude had
the same frequency, or frequencies with a simple integer ratio. A related issue is that
of the effect of symmetries on bifurcation sequences. The baroclinic annulus and the
system studied here have identical horizontal symmetries, the rotational invariance of
the SO(2) group, but different vertical symmetries. This raises the question of whether
the horizontal or the vertical symmetry group is more important in the bifurcation
structure.
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Figure 1. Stewartson layers after Stewartson (1957). The solid lines in the fluid domain indicate
the Ekman layers while the inner, E1/3, Stewartson layer is indicated by dotted lines and the outer,
E1/4, Stewartson layer by dashed lines.

1.3. Previous laboratory studies

The shear layer in a viscous rotating fluid was initially treated theoretically by
Stewartson (1957); a uniform fluid with a background rotation Ω is bounded in
the vertical by horizontal rigid boundaries separated by a distance H as shown in
figure 1. A shear layer is forced by rotating sections of the lid and base at a rotation
ω relative to the background rotation. Ekman layers form at the upper and lower
boundaries carrying a mass transport proportional to E1/2, which has to be balanced
by a vertical transport in a shear region at the edge of the rotating sections. The
resulting flow structures are two nested shear layers of thickness E1/4 and E1/3, the
Stewartson layers.

A few laboratory experiments have addressed barotropic instability and resulting
flow structures. Hide & Titman (1967) immersed a differentially rotating disk in a
rotating fluid, which set up a vertical shear layer above and below the edge of the
disk. Other experiments on barotropic instability have concentrated on the stability
of a jet rather than an isolated shear layer. Some experiments have used a thin fluid
layer in a parabolic vessel, where the fluid had a free surface and the shear layer was
forced by rotating sections of the lower boundary (e.g. Nezlin et al. 1990). Cyclonic
vortices show a depression of the fluid depth in their centre while anticyclonic vortices
have a raised surface. Holton (1971) and Solomon, Holloway & Swinney (1993) used
an arrangement of sources and sinks in the base to create a jet. Marcus & Lee
(1998) have shown in a theoretical study that for jets the two discontinuities (or
strong gradients) of potential vorticity at either side of the jet interact and determine
the dynamics, especially observed differences between super-rotating and sub-rotating
jets.

The experimental approach in this study follows Niino & Misawa (1984) who
forced a circular shear layer in a relatively deep fluid in contact with a rigid lid
by rotating sections of the base relative to the rotating tank. This approach avoids
topographic effects as well as effects due to surface elevations in the shallow layers
described above. All these previous studies have primarily addressed the basic flow
structure of the shear layer, its linear stability, and the qualitative global structure
of the vortex regime. Detailed studies of the structure and the nonlinear dynamics
of the vortices, however, have not been reported previously. A study closely related
to barotropic instability by Rabaud & Couder (1983) and Chomaz et al. (1988)
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Figure 2. Diagram of the apparatus.

investigated flow structures and bifurcations in a circular shear layer in a geometry
corresponding exactly to that of Stewartson’s problem shown in figure 1, but they
chose ω > Ω, so that neither Coriolis nor centrifugal forces dominated the dynamics,
and the dynamics were not that of barotropic instability. Furthermore, the fluid depth
was so small that the Ekman layer thickness would be larger than the fluid depth
(E > 1). The geometrical configuration of our experiment, shown schematically in
figure 2, has followed Rabaud & Couder (1983) while choosing parameter ranges
similar to Niino & Misawa, such that E � 1 and typically ω � Ω. The chosen
geometry resulted in an up–down symmetry not present in Niino & Misawa’s study,
and it models very closely the theoretical work by Stewartson (1957).

1.4. Symmetries and bifurcations

The important influence of a system’s symmetries on the observed flows and their
bifurcations has long been known (Ruelle 1973). Our circular tank, with differentially
rotating sections of the lid and base as depicted in figure 2 and the resulting basic
shear flow have the rotational invariance of the SO(2) group about the rotation
axis and the reflection symmetry, Z , about the horizontal mid-plane. The generic
bifurcation from SO(2) is to travelling waves (Knobloch 1996) with the Cm symmetry
of a wavenumber m, which is a subgroup of SO(2). The baroclinic rotating annulus,
e.g. Hide & Mason (1975), is another system which shows the rotational symmetry,
but has a more complex vertical symmetry due to the vertical shear of the basic flow.
The instability of the basic baroclinic zonal flow is also to travelling waves, consistent
with the properties of the SO(2) symmetry group.

With additional symmetries in the system, one of these other symmetries may be
broken first in the initial bifurcation while travelling waves may emerge later. An
example of this scenario is exhibited by the Taylor–Couette system, e.g. Mullin (1993),
which, like the system of this study, has the SO(2)×Z symmetry. A typical bifurcation
sequence in that system is from the axisymmetric and vertically uniform Couette flow
to steady Taylor vortices breaking the Z symmetry. This is followed by the emergence
of wavy vortices which break the SO(2) symmetry but retain a Cm symmetry.

In the experiment of Rabaud & Couder (1983) and Chomaz et al. (1988) with
exactly the same symmetries as our system, the initial bifurcation was to travelling
waves in the form of steady vortices along the shear layer, in a very similar way to all
previous experiments on barotropic instability. The up–down reflectional symmetry
was retained throughout most of their regimes, and it was broken only for a very
restricted range of parameters in the emergence of a flow pattern like a two-cell
Taylor vortex flow. Previous studies of rotating shear layers, e.g. Niino & Misawa
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(1984), however, suggest that all observed flows are vertically uniform. Consistent
with these observations, theoretical models assume purely two-dimensional flow in
the horizontal.

1.5. Parameters

The main parameters in this system are the Rossby number and the Ekman number.
The Ekman number is a measure of the viscous dissipation compared to the Coriolis
term:

E ≡ ν

ΩH2
. (1.1)

While this definition follows the convention adopted by most studies, Hide & Titman
(1967) have found that for a spinning disk immersed in a rotating fluid, the radius
of the disk rather than the fluid depth should be used for the length scale. Since we
have only used two different fluid depths, both having the same order of magnitude
as the disk radius, we chose the more common definition.

The Rossby number, Ro, is a measure of the nonlinear advection terms compared
to the Coriolis acceleration due to the background rotation of the flow. For a small
Rossby number, the nonlinear effects are small, and the dominant balance in the
bulk of the fluid is the geostrophic balance, resulting in horizontal, divergence-free
flow which may be expressed in terms of a stream function. The Rossby number is
defined here as the ratio of the imposed shear velocity (Ro) to the Coriolis term (2Ω)
multiplied by a suitable length scale. Two definitions of Ro occur in the literature,
which can be distinguished as an external and an internal Rossby number. The
external Rossby number uses the fixed length scale of the fluid depth H , while the
internal Rossby number uses the thickness of the shear layer L, which depends on
the Ekman number as L = (E/4)1/4H . In this study the external Rossby number is
used:

Ro ≡ Rω

2ΩH
. (1.2)

Niino & Misawa (1984) also described the flow by a single parameter, the Reynolds
number, defined as

Re ≡ LRω

ν
, (1.3)

where they chose the fluid depth, H , as the scaling length. In the case of a stable
Stewartson layer, however, it might be more appropriate to use the thickness of the
shear layer, L = (E/4)1/4H . In the analysis of the results, it will become apparent
that both definition of the Reynolds number are appropriate in different cases. The
external Reynolds number, using H , will be denoted by Re,

Re ≡ HRω

ν
= 2Ro E−1, (1.4)

and the internal Reynolds number for the E1/4-layer will be denoted by Re i,

Re i ≡ 1√
2

Ro E−3/4. (1.5)

With a typical fluid depth of H = 10 cm, and water as the fluid with a kinematic vis-
cosity of ν = 10−6 m2s−1, typical ranges of these parameters in the present experiment
are Ro = 0.01–1.0, E = 2× 10−5–10−3, and Re = 10–105 or Re i = 1–2× 103.
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Radius of tank A 300±3 mm
Radius of disks R 150±0.5 mm
Fluid depth H 100±1 mm
Kinematic viscosity ν (water) 1.00× 10−6±10−8 m2 s−1

(water/glycerol) 1.66× 10−6±10−8 m2 s−1

Turntable rotation rate Ω 0–+4.0±10−4 rad s−1

Disk rotation rate ω −0.7–+0.7±10−5 rad s−1

Mean fluid rotation Ω = Ω + ω/2
Rossby number Ro = (Rω)/(2ΩH) ±0.01–±1.0
Ekman number E = ν/(ΩH2) 2× 10−5–10−3

Reynolds number Re = HRω/ν = 2Ro/E 10 –105

or Re i = 2−1/2Ro E−3/4 1–2000

Table 1. Dimensions of the apparatus, fluid properties, and typical parameters.

2. Experimental apparatus and procedure
2.1. The apparatus

The fluid was contained in a cylindrical Perspex tank with a radius of 30 cm as shown
in figure 2. In the centre of the tank, a vertical axis of radius 3 cm supported two
horizontal circular disks with a radius of 15 cm each (the dark sections in figure 2).
Two flat rings were placed in the tank flush with the circular sheets to ensure a
uniform fluid depth throughout the domain. The height of the upper disk and ring
above the lower surface could be adjusted from 3 to 15 cm but was kept at 10 cm for
the experiments presented here. The actual fluid level in the tank was above the upper
ring and disk so that the fluid within the test domain was always in contact with the
boundaries. The gap between the rotating disks and the stationary rings was about
1mm which was always much less than the width of the inner Stewartson layer; at
the smallest obtainable Ekman number, E = 2× 10−5, the E1/3-layer would be 2 mm,
and 5 mm at E = 10−4. One can therefore expect that only for the smallest achievable
values of E the fluid between the disks might be affected by the fluid above the upper
disk. The depth of the gap, or the thickness of the disks was 3 mm, as was the fluid
depth below the lower disks. The fluid above the upper disks was between > 1 mm
and 4 mm with a free surface; these variations were due to the centrifugal effects
depending on the background rotation.

The inner axis with the disks was rotated by a stepper motor at angular velocities
ω ranging from −0.7 to +0.7 rad s−1(≈ ±0.1 Hz). The whole tank was mounted on
a steel turntable with a diameter of 1.2 m which rotated anticlockwise at angular
velocities of Ω up to 4 rad s−1 (≈ 0.7 Hz). These two parameters were controlled by a
PC such that either sequences of experiments at fixed parameter values or slow scans
of the parameter space by gradually changing one of the parameters or a suitable
combination (such as Ro or E) were performed. In the latter case, a typical scan
would cover a range of one or two orders of magnitude in Ro or E in ten hours.
Table 1 summarizes the physical dimensions of the apparatus, together with the fluid
properties and the principal dimensionless parameters.

Two complementary ways to monitor the flow were used: laser-Doppler velocimetry
(LDV) to obtain high-precision time series, and particle tracking (also known as
particle image velocimetry, PIV) to obtain snapshots of the global horizontal flow
field. Owing to the different densities of the seeding particles, different fluids had to
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be used, namely water for the LDV measurements and a water–glycerol mixture for
the particle tracking experiments.

Using LDV measurements, the radial velocity at a single point in the shear layer
was measured with a forward-scattering LDV system from TSI which was mounted
on the turntable. The measurement point was at mid-height in the centre of the shear
layer fixed in the frame of the tank. The working fluid was water, seeded with 6µm
latex beads to give a consistent Doppler signal. The laser was a 10 mW red He/Ne
laser, with one of the beams frequency-shifted by 20 kHz. The Doppler signal was
analysed with a TSI IFA-550 with an analogue output card linked to a PC. It was
found that a sampling rate of 1 Hz, each sample calculated as the average over 100
measurements, was appropriate for all investigated flow types. Large jumps in the raw
time series were an artefact of the LDV processing and were replaced by the average
of the previous and successive data point. The velocity range for all experiments was
from −30 to +60 mm s−1, where a typical vortex flow had maximum velocities of
about ±10 mm s−1 with a measurement accuracy about ±0.2 mm s−1.

The horizontal velocity field at mid-height was obtained by recording neutrally
buoyant tracer particles with a CCD video camera mounted on the turntable viewing
the tank from the top. The tracer particles were pliolite beads with a diameter of
600 to 700 µm, and the working fluid was adjusted to have the same density as the
particles, ρ = 1044 kg m−3, by adding glycerol to water which resulted in a kinematic
viscosity of ν = 1.66 × 10−6 m2 s−1. The particles were illuminated by a horizontal
light sheet with a thickness of around 5 mm produced by three light sources each
consisting of a projector lamp and a cylindrical lens. Owing to refraction of the light
on the cylindrical sidewall of the tank, the illumination was not uniform throughout
the tank, and three areas near the outer perimeter were darker. The images, recorded
onto S-VHS tapes, were nevertheless of sufficient quality to construct global flow fields
using the software package DigImage, developed at Cambridge (e.g. Dalziel 1992).
Each velocity field is calculated from 16 video frames, each 0.4 s apart, resulting in a
flow field averaged over 6 s.

2.2. Procedure and data analysis

To cover the parameter space defined by the Rossby and Ekman numbers efficiently,
one of these parameters was slowly scanned over the range of the apparatus and the
other was kept constant while the flow regimes were recorded. After the parameter
space was covered, experiments at fixed parameter values were performed to obtain
long time series of the flow, using LDV, and to obtain snapshots of the global
horizontal flow field using DigImage.

2.2.1. Time-dependent forcing

When the regime diagram was scanned by slowly varying one parameter, the main
interest was in determining the qualitative behaviour and the nature and location of
transitions and bifurcations. Bifurcation diagrams were most efficiently constructed
from velocity time series using the LDV system. Since the axes on the regime diagram
are logarithmic, the rate of change of the bifurcation parameter was chosen to be
logarithmic in time. Therefore, a time series of the measured velocity plotted on
a linear time axis corresponds to a bifurcation diagram traversing the logarithmic
regime diagram at a constant rate. Each scan of a parameter lasted typically 7–12
hours, where no discernible difference in the observed flow types and transitions was
found between different rates of change. Both directions, increasing and decreasing
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the parameter, were employed since hysteresis is known to be a common phenomenon
in fluid experiments and was observed in the present system.

Besides using the time series of the radial velocity as a bifurcation diagram, it
was found that tracing the time evolution of the independent frequencies within
short windows of the series was an efficient method of tracking mode transitions
and bifurcations such as period-doubling bifurcations. To do this, spectrograms were
obtained by calculating a time series of FFT power spectra over a short window
(typically 1024 s), from which the dominant maxima were found. Higher harmonics
of an identified maximum, as well as sum or difference frequencies, were discarded,
but subharmonics could be retained to detect period-doubling bifurcations. The
independent frequencies, normalized by half the differential rotation – the winding
number, W ≡ 2πf(ω/2)−1 were then plotted as functions of the bifurcation parameter.
If the flow structures were to move at the mean velocity of the shear layer then they
would move in the reference frame of the outer section at half the velocity of the
inner section. The value of W for a single structure swept around the tank would
then be equal to one, and a structure with an azimuthal wavenumber m would
correspondingly have W = m. The variations of the winding number showed mode
transitions very clearly, and it was possible to infer the number of vortices from these
frequencies, though the observed values of W were not restricted to integers. The
relationship between the dominant frequency and the wavenumber was confirmed in
the flow visualization experiments.

The power spectral amplitude at the dominant frequency was used to characterize
some of the observed bifurcations. Using a suitable normalization, the amplitude is a
measure of the amplitude of the dominant oscillation which can be used to construct
a traditional bifurcation diagram. The conversion from power spectral amplitude to
a normalized velocity amplitude used here is defined as the square root of the power
spectral density normalized by the imposed shear velocity.

2.2.2. Steady forcing

Once the regime diagram was mapped out, longer time series under constant
forcing were obtained to examine the dynamics and temporal statistics of the in-
dividual regimes. The experiments were performed in a number of stages. After
spin-up from rest to an initial point in parameter space, the flow was allowed to
settle for 30 min before data were taken for a period of 4 hours. Then either the
Rossby number or the Ekman number was changed smoothly over 30 min while
the other parameter was held constant. Following the change in parameters, the
flow was again left for 30 min before another set of velocity data was taken for a
further period of 4 hours. This procedure was usually continued until the physical
limitations of the apparatus were reached, or until the flow became axisymmetric
(depending on the direction of the change in E or Ro). This procedure was applied
to both modes of operation, LDV and particle tracking. Owing to the limitation
of 3-hour video tapes, the time scales for the particle tracking were much shorter,
5 minutes for changing the parameter and equilibration and 10 minutes for recording
the flow. Before the tape was started, the flow was allowed to settle into an equilibrium
state for at least 30 min.

LDV data obtained in this way were analysed with linear techniques, such as power
spectra, as well as Singular Systems Analysis (SSA). To obtain information on the
statistical significance of features in the power spectrum, the average of several power
spectra from subsets of the time series was used. When the low frequencies were more
interesting than the high-frequency components, the subsets were constructed from
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interlaced, sub-sampled series. For example, for an average of m spectra, only every
mth measurement was taken. Possible aliasing effects introduced by the sub-sampling
were tested by obtaining average spectra from different sub-sampling rates. This
procedure showed that aliasing could result in strong spectral peaks, but that these
peaks were easily identified. Useful averaged spectra from up to about ten individual
spectra were obtained. For averaged spectra of higher frequencies, short sections of
the time series (typically 1024 points) were used.

SSA provides information on the qualitative dynamics of the flow by reconstructing
the phase portrait using the singular value decomposition (SVD) of a time-delay
covariance matrix of the radial velocity time series (Broomhead & King 1986). This
procedure ensures that the dynamics of the flow with the strongest variance is
described by a small number of singular vectors. This technique is much less sensitive
to the correct choice of the delay time or the window length. Best results, however,
are obtained if the window length is comparable to, or larger than, the main period
of the oscillations. When low-dimensional dynamics are contaminated with white
noise, then the leading singular vectors span a sub-space of the phase space which is
an embedding of the low-dimensional attractor, while the remaining singular vectors
are dominated by the uncorrelated noise. The orientation of the significant singular
vectors is such that the signal-to-noise ratio is maximized. The projection of the delay
time series onto M leading singular vectors gives the trajectory in an M-dimensional
embedding which can be used to construct phase portraits, Poincaré sections, return
maps, and to estimate the attractor dimension (using the algorithm from Grassberger
& Procaccia 1983) and the largest Lyapunov exponent (Wolf et al. 1985).

By finding the eigenvectors of the covariance matrix, SSA effectively separates
dynamic signals from white, uncorrelated noise. Frequently, the signal of interest is
not only contaminated by white noise but also by coloured noise, or it may be masked
by a strong known signal. A variant of SSA, called here reference SSA or R-SSA,
was designed by Allen & Smith (1997) to extract dynamic information from a time
series contaminated by a known or estimated noise process. The procedure is to find
a coordinate transformation for the covariance matrix of the data series such that the
contaminating noise or signal becomes uncorrelated. This coordinate transformation is
provided by the SSA analysis of a time series which only contains the ‘contamination’.
For instance, to detect a weak modulation of a strong oscillation, the oscillation which
is masking the modulation has to be treated as the contamination. SSA analysis of
a time series from an unmodulated oscillation provides the eigenvectors for this flow
and with it the transformation matrix to ‘filter out’ the strong oscillation. Components
of the transformed time series which are not consistent with the ‘contamination’ time
series (the modulation in the example) will be picked out in the singular value
decomposition as eigenvectors with eigenvalues above a calculated noise floor. In the
following, the notation to indicate which flow regime containing the unwanted signal
was used to find additional information in a time series is A/B, where A is the time
series containing the unknown signal contaminated by ‘noise’ described by B.

3. The regime diagram
This section presents an overview of the flow regimes found in the experiments.

The two regime diagrams for a parameter space defined by the Rossby and Ekman
numbers, shown in figures 3 and 4 for positive and negative Ro respectively, were
derived mainly from the experiments with the ramped forcing. The structure of the
regime diagrams was then confirmed and refined by the subsequent experiments
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Figure 3. Regime diagram for positive Ro obtained from experiments using the method from § 2.2.1.
The black areas denote highly irregular flow (I), 0 the stable basic flow, m modulated oscillations,
w weak fluctuations about zero velocity, and P period-doubled solutions. The numbers refer to the
wavenumber of the vortex flows. Solid lines denote transitions without any noticeable hysteresis,
and broken lines denote hysteretic transitions. The region of modulated oscillations is indicated by
a dash-dotted line.

with steady forcing. When the inner disks rotate with the same orientation as the
background rotation then the Rossby number is defined to be positive, otherwise to
be negative.

The axisymmetric solution and the regime of relatively regular vortex flows with
different numbers of vortices are indicated by 0 and wavenumbers, m, respectively.
One phenomenon observed in common with all shear layer experiments mentioned
in § 1.2 is the successive transition to lower numbers of vortices as the supercriticality
(with respect to the initial instability) is increased – either by increasing |Ro| or |Re| or
by decreasing E. Reversing the change in the parameter resulted in a corresponding
increase of the vortex number, though substantial hysteresis was observed. This
hysteresis is shown by the dotted lines and the multiple numbers in the regime
diagrams. For example, at (Ro, E) = (−0.08, 1.5×10−4) one would observe six vortices
if one approached the point from the left (small Ro) or top (large E), but four vortices
on approach from the right (large Ro) and five vortices when starting from below at
small E.

Figure 5 shows a time series of the radial velocity or bifurcation diagram as |Ro|
was gradually increased, while E was kept fixed at E = 10−4. This time series is divided
into four panels, where the beginning is at the top left. The second panel continues
from the end of the first, and so on, to the end of the time series at the bottom right.
The first impression is that the initial flow is a zero solution, occasionally perturbed
by bursts of activity. This is followed by oscillations, sometimes regular, sometimes
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with strong noise added. More complex flows appear at relatively large values of |Ro|,
namely modulated flows, aperiodic oscillations, and highly irregular flows.

The axisymmetric, or zero, solution is that of the stable Stewartson layers which
become unstable to travelling waves at a critical Rossby or Ekman number. The
observed bursts in the axisymmetric regime could be an indication that the shear
layer might be weakly unstable (possibly convectively unstable) before the visible
onset of relatively regular oscillations. These oscillations are clearly distinguishable
above |Ro| = 0.051, but might be present before though hidden in the measurement
noise. Other indications of weak instabilities are found at very small values of Ro and
E. There, the velocity measurements were characterized by weak, irregular fluctuations
around zero velocity. The transition to regular oscillations, which also appears to be
accompanied by a burst of a strongly noisy signal will be discussed in detail in the
following section, § 4. The oscillation which is visible beyond Ro = −0.051, shows
a further period of perturbed flow around Ro = −0.075. These perturbations are
followed by a marked increase of the oscillation period. This increase of the period
reflects a mode transition to a lower wavenumber which will be discussed in § 5.

3.1. Irregular flow solutions

The highly irregular flow for 0.129 < −Ro < 0.139 is not an artefact of the LDV
system, but is a repeatable feature of the experiment, occurring over a well defined
range of parameters with only little hysteresis. This irregular flow, indicated by the
black areas in figures 3 and 4, occupies a substantial part of the regime diagrams. For
positive Ro, the regimes appear as a two narrow strips aligned at a line of constant
Ro/E. This would indicate that the Reynolds number, as defined by the external
dimension in (1.4), determines the occurrence of this irregular flow. The Reynolds
number at which the transition to this flow is found is Re = 2550, and the transition
back to predominantly horizontal motion is at Re = 2800. This range also applies to
one of the irregular regimes found at negative Ro.

The other irregular regime, for small E at negative Ro, has a different velocity
structure with fluctuations around much smaller velocities than any of the other
irregular regimes and appears to be a different flow regime, possibly linked to the
weak fluctuations indicated by w in figure 4. It is possible that this flow may be
affected by the gap between the split disks and the fluid above the upper boundary
layer, because at these values of E, the E1/3 layer is not very much thicker than the
gap.

As apparent in the time series in figure 5, the flow in the irregular regimes
at positive Ro and the upper irregular regime at negative Ro is characterized by
strong fluctuations around a positive mean velocity, where the velocity generally
remains positive. The positive velocity almost certainly implies that the flow is fully
three-dimensional in this regime. This conclusion is drawn from the fact that the
measurement point of the LDV system is in the frame of the outer tank in which
the mean shear layer rotates at approximately ω/2. If the flow is always positive at
the measurement point, it follows that it will also be positive at all other points in
the fluid with the same radius and height. Mass continuity then requires substantial
negative velocities above or below mid-height. It is possible that the flow structure
may be similar to that of a two-vortex state found in the Taylor–Couette system.

A flow of two vertically stacked convection cells was observed in the circular shear
layer experiment by Rabaud & Couder (1983) which would be consistent with our
LDV signal. They observed this flow for large Reynolds numbers (though still an order
of magnitude smaller than observed here) in a relatively deep fluid (0.3 6 H/R 6 0.6).
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Their suggestion that this flow arises from a centrifugal instability, however, cannot
be transferred to our observations, since we observed the irregular flow not only
for positive but also for negative ω, where the centrifugal force increases outwards
and inhibits centrifugal instability. While some preliminary visualizations of a vertical
section have indicated the existence of Taylor–like cells, their structure and dynamics
are not yet understood.

3.2. Modulated vortices

At Ro = −0.139 in the time series in figure 5, the flow appears to switch back to the
vortices observed before the onset of the irregular flow. These vortices then develop
a modulation with a period of 4–5 times of that of the vortex drift, denoted by m
in the regime diagrams in figures 3 and 4. From the LDV measurements alone, it is
not possible to determine the exact nature of these flows, for instance if they are a
temporal modulation of a single wave mode m = 3 or if they are a spatial modulation
due to an interference of two dispersive wave modes. This flow regime is analysed
in detail in Part 2 using LDV and particle tracking experiments. From the regime
diagram, the modulated regime appears to be linked in some way to the irregular
regimes, where the modulated regimes forms regular ‘islands’ between and around the
two irregular regimes for each sign of the Rossby number.

The final distinct flow change in the time series in figure 5 is another mode transition
leading to a flow with a relatively low frequency. This flow shows clear evidence of
a period-doubled signal towards the end of the time series. These regimes, which
show a period-2 flow, or a more complex flow with a strong period-2 component, are
denoted with P in the regime diagrams in figures 3 and 4, and are discussed further
in § 5.4.

4. The axisymmetric flow and its instability
4.1. The axisymmetric flow

The horizontal velocity of the stable axisymmetric flow is shown in figure 6 together
with the mean azimuthal velocity and the radial shear of the azimuthal velocity. Even
at these parameter values, Ro = −0.035 and E = 3 × 10−4, the velocity from the
particle tracking showed some deviation from rotational symmetry which may be
caused by the fitting of the velocities onto a rectangular grid. If the width of the
shear layer is defined as the half-width of the peak in figure 6(c), then the shear layer
thickness is approximately 40 mm. With an Ekman number of E = 3 × 10−4, the
thickness of the outer Stewartson layer would be δ = 9.3 mm, which is about a quarter
of the measured thickness but, given the spatial resolution of the particle tracking
set-up, those values are not inconsistent with each other. Owing to these limitations
of the particle tracking experiments, it is not possible or feasible to follow the scaling
of the shear layer thickness over a large range of E, but Baker (1967) measured the
profile of the axisymmetric flow in a similar geometry. While he also observed that
the shear layer tended to be thicker than predicted, the thickness was found to scale
with E1/4 (a variant of the derivation is presented in Greenspan 1968, § 2.18).

4.2. Linear stability

To examine the linear stability of the basic shear flow, Greenspan (1968) separated
the fluid into Ekman layers and the inviscid interior. The equations were expanded
in powers of E1/2, and then a stability criterion in the form of Rayleigh’s inflection-
point criterion was obtained. This approach, however, neglected viscous effects in
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the Stewartson layers. A typical boundary layer approach to include the effects of
viscosity in the Stewartson layer was presented by Hashimoto (1976) where the fluid
region is divided into an inviscid interior and viscous boundary and shear layers
using the scaling of the Ekman layers and the two Stewartson layers. The resulting
instability criterion implied that an infinite set of unstable wavenumbers exists for
every combination of Ro and E. The lack of a short-wave cut-off, however, is in
contradiction with previous experimental observations.

Niino & Misawa (1984) noted that Hashimoto had neglected some of the terms
related to the streamwise gradient of vorticity. They proposed a different approach
which included explicit dissipation in the fluid interior. To make progress they used
the quasi-geostrophic approximation, which cannot resolve the E1/3 layer. According
to Greenspan, the contribution to the tangential velocity from the E1/3 layer vanishes
when averaged over depth, and it is therefore assumed to have a small effect on
the barotropic instability. The principal stability parameter is the internal Reynolds
number as defined in (1.5). This would suggest that the instability is primarily a
shear instability, where the influence of the background rotation is restricted to
the fact that the shear is concentrated in a boundary layer of thickness E1/4. In
addition, the curvature of the circular shear layer has a small influence on the
stability. The ratio of the radius of curvature of the shear layer to the shear layer

thickness, γ = R/
(
(E/4)1/4H

)−1
modifies Rei,c and the most unstable wavenumber.

For γ → ∞ (γ & 30), the first wave to become unstable at Rec = 11.6 has a wave
vector of k = 0.28, which increases to k = 0.5 and Rec = 20 at γ = 3. The effect of the
curvature of the shear layer is therefore to stabilize the layer and to shift the unstable
modes to shorter waves.

The range of γ covered in the present experiment is from γ = 12 at E = 10−3 to
γ = 32 at E = 2× 10−5. Therefore, at E = 2× 10−5 we would expect k ≈ 0.28 which
corresponds to a wavenumber of m = kγ of 8, and at E = 10−3 we would expect
k ≈ 0.31 or m = 3.

4.3. The bifurcation to vortices

As the Ekman number was reduced or the Rossby number increased, low-frequency
fluctuations began to emerge in the time series, which became stronger and more
coherent with the gradual strengthening of a particular frequency range until a
definite vortex structure was established. Purely from the time series in figure 5 it
is not possible to decide if the boundary layer theory is correct where the higher
modes cannot be distinguished from measurement noise, or if there is a short-wave
cut-off, and with it a critical parameter, for the onset of vortex solutions. If the short-
wave cut-off exists, as predicted by the quasi-geostrophic theory, then the onset of
oscillations could be through a supercritical Hopf bifurcation, because the oscillation
frequency is constant near the onset (see below in § 5.2, figure 12a) and the amplitude
appears to grow gradually. For a supercritical Hopf bifurcation, the amplitude of the
vortices would go to zero at a well defined parameter value. On the other hand, for
a continued existence of the vortices below the noise level, one would not expect to
be able to extrapolate the amplitude to zero at a finite parameter value.

If the emergence of the vortices is consistent with a supercritical Hopf bifurcation,
the amplitude of the oscillation grows with the square root of the bifurcation param-
eter. To show the amplitude behaviour more clearly, the square of a measure of the
amplitude is plotted in figure 7(a), namely the power spectral density at the dominant
oscillation frequency normalized by the velocity of the disks in the shear layer. Since
for small Ro this normalization involves the division of two small numbers contami-
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black dots are the amplitude of the dominant frequency, and the dashed line that of the second
independent frequency. The solid line is a line fitted to the dots in the interval 0.04 < |Ro| < 0.14.
(b) The scaled amplitude of the fitted Hopf bifurcation as a function of the Ekman number.

nated by noise, the noise is strongly amplified. Nevertheless, it is possible to see that
the squared amplitude increases linearly above a critical value of Ro. The dashed line
shows the amplitude of oscillations at the second independent frequency. At a point
where more than one oscillation is strong the flow is strongly nonlinear and the local
unfolding of the Hopf bifurcation is no longer valid. This point is clearly reached at
−Ro = 0.1 which corresponds to the irregular regime followed by the modulated flow.
Therefore only the section below the irregular regime was used for the line fitting
which resulted in

v = A0 |Ro − Roc|1/2 (4.1)

with A0 = 0.75 ± 0.03 and Roc = −0.039 ± 0.003 for E = 10−4. As expected, this
extrapolation goes below the visible onset of oscillation at |Ro| = 0.051, and the onset
of oscillations is extrapolated to Roc = −0.039 which coincides with one of the bursts
of fluctuations in the time series in figure 5.

Most importantly, the finite value for the onset of vortex flows and a square-root
dependence of the vortex strength indicate that the onset of vortex solutions in the
rotating shear layer is through a supercritical Hopf bifurcation. This implies the
existence of a short-wave cut-off, which is absent in the boundary layer theories, but
provided in the quasi-geostrophic theory by dissipation in the fluid interior (outside
the shear layers).

4.4. The instability criterion

Figure 8 shows the experimentally determined points of marginal stability where the
error bars were derived from the curve fitting procedure used for (4.1). Even though
the points in the figure are compiled from both positive and negative Ro, and from
changing either parameter in either direction, the general shape of the stability curve
is almost a straight line. No difference for the different directions of the relative
rotation is apparent. The critical Rossby number, Roc, varies with E as

Roc = 27(±1)E0.72±0.03 (4.2)

with a correlation coefficient of r2 = 0.94, as indicated by the solid line in figure 8.
While the scaling exponent differs from that deduced by Hide & Titman (1967) (who
obtained Roc = 29E0.6), it agrees qualitatively very well with the theoretical prediction
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to the data, and the dotted line is the linear instability calculation from Niino & Misawa (1984).

of Niino & Misawa (1984) which is shown in figure 8 by the dotted line although
it is shifted to larger values of Ro. The implication is that the onset of instability
can be described by the internal Reynolds number, where the critical value is weakly
dependent on E. Using (4.2) and the definition of the internal Reynolds number in
(1.5), one obtains for the critical Reynolds number

Rei,c = 19E−0.03 ≈ 24± 2. (4.3)

Since the instability seems to be determined by an Ekman-number-dependent
Reynolds number, it was suggested that the amplidude of the Hopf bifurcation, i.e.
the gradient in figure 7(a) or A0 in (4.1), might also be described as a function of
the Ekman number. Since the magnitude of the gradient from the linear regression
varied dependent on whether Ro or E was the bifurcation parameter, the two sets
were initially investigated separately, that is, all experiments for both signs of Ro and
either direction of change of the bifurcation parameter were correlated which resulted
in two independent correlations for the amplitude of the Hopf bifurcation. With
Ro as the parameter, we obtained A0 = 4.3Ro−0.35, and with E the correlation was
A0 = 0.075E−0.26. To test if these two results could be combined to a single description
of the amplitude, the amplitudes were scaled by their respective constant, i.e. 4.3 for
changing Rossby number and 0.075 for varying Ekman number. The A0 scaled in this
way are shown as a function of E in figure 7(b) together with a regression analysis
which resulted in

A0 = A00E
α (4.4)

with A00 = 0.030± 0.005 and α = −0.6± 0.1 with a correlation coefficient of r2 = 0.7.
While the correlation is not very large, the two sets of results from either Ro or E as
the parameter are not distinguishable in the combined set.
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Label Ω ω Ro E m W1,2 Figure nos.
(rad s−1) (rad s−1) (rad s−1) (×10−3)

0.172 −0.011 −0.035 0.73 0 — 6
V3 0.216 −0.100 −0.25 0.73 3 — 9
V4 0.267 −0.068 −0.18 0.30 4 2.49 10, 11, 15
nV 4 0.263 −0.061 −0.16 0.30 4 2.49 13, 14, 15, 16
Pa 0.332 −0.198 −0.53 0.30 1/2 0.50 17, 18
Pb 0.266 −0.199 −0.50 0.73 1/2 — 19, 21
Pi 0.311 −0.157 −0.42 0.30 1/2 0.56 20, 22
mPi 0.315 −0.164 −0.44 0.30 1/2 2.05, 0.55 20, 22, 23

Table 2. Specific cases discussed in § 5.

The critical Rossby number decreases as E decreases. This is not surprising since, as
E decreases, the thickness of the shear layer becomes smaller, and the shear becomes
more concentrated. As a result, the local velocity shear increases for any given total
radial shear as measured by Ro, and the layer becomes unstable earlier. This is
also represented in the internal Reynolds number which scales the velocity shear
with the Stewartson layer thickness. The Reynolds number, however, cannot capture
the wavenumber of the most unstable mode, but it can be described by the layer
thickness. As the thickness of the shear layer decreases, the radial length scale and
with it the size of the vortices also decrease coupled with an increase in the number
of vortices. The invariance of the instability criterion with respect to the sign of the
Rossby number supports further the validity of the quasi-geostrophic approximation
which also has this invariance.

5. Vortices
In this section, the characteristics of steady vortices will be presented. The typical

cases discussed here are listed in table 2. In the text they will be referred to by a label
indicating the flow regime they were selected from, namely V for regular vortices, nV
for noisy vortices, and P for period-doubled vortices. When referring to these specific
experiments, their respective label, e.g. V3, will be used in the text and figure captions.
The labels also indicate these experiments in the regime diagrams in figures 3 and 4.

5.1. Regular vortices

A typical vortex flow is shown in figure 9, V3 at Ro = −0.25 and E = 7.3×10−4. The
shear layer is deformed into a wavy pattern with three troughs and ridges and three
counter-rotating vortices on the outside of the shear layer. This entire flow pattern
rotates as a steady pattern in the tank at somewhat less than half the inner disk
rotation. A short segment of the LDV time series of the radial velocity from V4, an
m = 4 flow, is shown in figure 10(a). The dominant feature of the time series is the
large oscillations which correspond to the drift of the troughs and ridges past the
measurement point. Some weaker fluctuations can be seen which could be due to
noise or a weak modulation of the flow field. The power spectrum of the time series,
in figure 10(b), shows very distinctly the main frequency of f1 = 1.354 × 10−2 Hz
(T = 73.8 s) of the wave drift. The higher harmonics of the main frequency are due
to the non-sinusoidal shape of the oscillation. The spectrum was obtained from the
average of ten sub-sampled spectra, and the two dotted lines indicate the level of
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Figure 9. Velocity field and vorticity map of V3, an m = 3 flow with three vortices at the outer
edge of the shear layer (Ro = −0.25, E = 7.3× 10−4).

statistical significance. The lower line is one standard deviation (s.d.) above the mean
power, and the second is 2 s.d. above the mean. The mean was here calculated from
80% of the spectrum where the strongest components were omitted to eliminate the
obvious frequencies from the vortex drift. Rejecting any frequency component with
less than 2 s.d. above the mean still leaves a peak at f2 = 1.028× 10−2 Hz, together
with peaks at combinations of f1 and f2, as a significant modulation of the flow.

A phase space reconstruction for the periodic flows using SSA resulted in a
broadened limit cycle. The example shown in figure 11(a), which was obtained from
the m = 4 flow shown in figure 10, used a window length of 80 s to cover a
complete cycle of the vortex drift. The Poincaré section at the zero crossing of the
first principal component showed two well defined regions, but without any obvious
internal structure. The first return map (of the second principal component at positive
crossings of the section in figure 11b), however, indicates that the points are arranged
on a very ‘fuzzy’ toroidal structure around a clear centre. This is further support for
the presence of modulation of the vortex flow as indicated by the power spectrum.
Its Grassberger–Procaccia dimension estimates showed a small but distinct scaling
region with a correlation dimension of between dc = 1.2 and 1.8 for embedding
dimensions between 5 and 9 as shown in figure 11(d) confirming the presence of
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Figure 11. Phase space reconstruction for the regular vortex flow V4 using SSA. (a) Phase portrait
and (b) first return map of the second principal component at the positive crossing of the Poincaré
section where the first principal component is zero for a regular vortex flow (V ); (c) Eigenvalues of
the singular value decomposition, and (d ) correlation integral for embedding dimensions 3, 5, 7, 9,
and 11, together with indication of the scaling limits.

chaotic low-dimensional chaos. With embedding dimensions larger than about 10, the
noise component becomes too strong for the algorithm. A dimension of approximately
1.5, however, is not consistent with that arising from an instability of a torus which
would result in a fractal dimension dc > 2. This contradiction suggests that one
should interpret the result with caution.
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5.2. Dispersion relation

The transitions between wavenumbers are most clearly seen in a plot of the winding
number against the varying parameter. An example of this is shown in figure 12(a) for
the time series shown in figure 5. The location of the critical Rossby number found
in (4.1) is marked by a vertical dashed line. Distinct sections of virtually constant
winding number can be seen. Jumps in W1, e.g. at Ro = −0.051 from W1 = 6.3 to
4.4 and at Ro = −0.075 to W1 = 2.5, correspond to mode transitions to lower vortex
numbers. Flow visualization experiments revealed that W1 ≈ 0.7 corresponds to a
mode m = 2 and W1 ≈ 1.6 to m = 3, and so on. Linear relationships for each sign
of Ro between the winding number and wavenumber were fitted separately but gave
the same results within the calculated error margins,

m = 1.2(±0.2) + 1.12(±0.06)W1 (5.1)

with a correlation coefficient of r2 = 0.997 for Ro > 0 and r2 = 0.989 for Ro < 0.
Using this correspondence, figure 12(a) can be interpreted as follows for the particular
value of E = 10−4 of the example shown, the first well-defined mode is m = 8. The
flow then undergoes a sequence of mode transitions to m = 6, 4, 3, and 2. Other
transitions, e.g. to modulation, are only seen for wavenumbers 2 or less. Reversing the
bifurcation parameter resulted in a similar sequence, though considerable hysteresis
is found. In the reversal of the experiment discussed here for instance, the highest
wavenumber found was m = 5.

The relationship between m and W1 in (5.1) suggests a dispersion relation for the
wave speed, ωm = cmk, as

ωm = (0.89− 1.08/m)ω/2 (5.2)

with ωm = 2πf1/m. No systematic variation with the background rotation Ω could be
detected. Equation (5.2) implies that all waves drift slower than the mean shear flow
(ω/2) where the retardation is strongest for the low wavenumbers. This was also noted
by Rabaud & Couder (1983) who argued that the retardation was caused by the fact
that the vortices were not central in the shear layer but shifted to the outside. This
observation was also made in our flow visualization experiments such as in figure 9.
Furthermore, the lower wavenumbers had a larger radial dimension and a more
pronounced outward shift. Therefore, all vortices would drift at a velocity between
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Figure 13. (a) Short segment of a time series of the radial velocity, and (b) power spectrum for
noisy vortices, nV4.

that of the outer section of the tank (stationary in our measurement frame) and the
mean shear flow, where the influence of the stationary outer section would become
stronger with increasing vortex diameter. The empirical dispersion relation found by
Rabaud & Couder (1983) and Chomaz et al. (1988), namely ωm = (1 − 1.4/m)ω/2
(transformed to our coordinate system), agrees qualitatively with (5.2).

The wavenumbers observed at the onset of instability cover the predicted range of
Niino & Misawa (1984) for the most unstable wave mode extremely well, from m = 8
at the smallest possible values of the Ekman number, to m = 3 at the largest values
of E. In figure 12(b), the first reliable wavenumber as found from frequency plots
such as figure 12(a), is plotted as a function of the Ekman number, together with the
most unstable wavenumber as predicted by quasi-geostrophic theory.

5.3. Noisy vortices

The vast majority of the experiments in the vortex regimes showed some noise up
to ≈ 1 mm s−1 which is well above the measurement noise level of the LDV system
(≈ 0.2 mm s−1). This noise, however, was not detectable by the particle tracking
experiments. As shown in the times series of nV4 in figure 13(a), the ‘noisy’ flows
not only exhibited an increased level of relatively uniform fluctuations (about 1 mm
s−1 in the displayed example), but also frequent spikes in the signal of the same
order of magnitude as the vortex signal itself. The flow in figure 13 is an m = 4
flow, the same as the regular flow V4 shown in figure 10, and it was observed at
(Ro, E) = (−0.16, 3×10−4), very close to the regular flow at (Ro, E) = (−0.18, 3×10−4),
after a transition from m = 5 at Ro ≈ −0.13. The power spectrum, in figure 13(b),
only shows the vortex drift at f1 = 1.216× 10−2 Hz and its harmonics.

Phase space reconstructions using singular systems analysis showed the same loss
of signal-to-noise ratio, as shown in figure 14. The fuzzy but thin toroidal structure
of V has a singular spectrum where the first two eigenvectors captured 76% of the
variance and the first two pairs 94% (figure 15a), while for nV the first pair of eigen-
vectors described only 36% of the total variance and the first four eigenvectors 46%
(figure 15b). The singular spectrum of the noisy vortex flow shows some apparently
paired eigenvectors 3 and 4, which is often indicative of oscillatory modes, but their
respective principal components do not show any resolvable structure in the phase
portraits as illustrated in the return map of the positive crossings of the second
principal component of the Poincaré section where the first principal component is
zero in figure 14(b). The only ordered structure in the reconstructed phase space
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Figure 14. (a) Phase portrait and (b) return map of second principal component
for the noisy vortex flow nV4.
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Figure 15. Singular spectra from SSA (a) for V4, and (b) for nV4,
both with a window length of 80 s.

is the large oscillation of the first pair of eigenvectors, associated with the vortices
drifting past the measurement point (figure 14a). Also, the dimension estimates failed
to show any scaling region: the limit cycle from the first pair of eigenvectors did not
contribute to even a small scaling region.

A way to detect if there may be any additional structure hidden in the noise besides
the strong vortex signal is to use the reference SSA technique, R-SSA, as described
in § 2.2.2. Figure 16 shows the singular spectrum of nV4/V4, in which the periodic
motion and the background noise found in V have been filtered out. The resulting
flat spectrum which is well below the calculated noise level (indicated by the solid line
in figure 16) can be interpreted in the following way: the vortex dynamics, which in
the standard SSA resulted in the strong first pair of eigenvectors, are accounted for
in the reference model and do not appear as a ‘new’ signal in the filtered noisy data.
The second pair of eigenvectors, which had quite substantial eigenvalues without
showing any structure in the phase portrait, does not contain any coherent signal
above the noise level, once the periodic solution is filtered out. Only a flat white
noise spectrum remains. The conclusion is that the noisy vortices do not contain any
more information or further deterministic dynamics (as could have been indicated
by the enhanced eigenvalues of the second pair of eigenvectors), but that the noisy
vortex state contains the same deterministic dynamics as the periodic vortices only
with added white noise.
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5.4. Period-doubling

No true m = 1 flow was found in the experiment. Instead, the velocity signal
developed a strong period-doubled signature and so this flow type is labelled P .
Unlike the other regular vortex flows which showed in most cases a significant noise
contribution, periodic flows with very little noise covered a much larger area of the
regime diagram than noisy P flows. The latter were found relatively close to the
irregular regimes, though sequences from I to periodic P and then to noisy P were
found and are discussed separately in § 5.5.

Figure 17 shows the time series of Pa, a typical period-doubled flow. From the
phase portrait reconstruction in figure 18 it seems that Pa is a regular period-doubled
flow. A window length of 140 s was used which extended over the period of the main
oscillation of 127 s but not over the period-doubled period of 254 s.

Flow visualization experiments, as shown in figure 19, have revealed that this flow
is in fact a steady vortex flow which could be described as a spatially period-doubled
flow with strong m = 1 and m = 2 components of one strong and one weak vortex
in a distorted jet stream. The two vortices are not at opposite sides of the centre of
the tank, as it was the case in the m = 2 flow, but the lines from the tank centre to
the centre of each vortex form an angle of 37◦ in the case of figure 19. Other particle
tracking experiments across the P regime showed considerable variation of this angle
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from less than 10◦ up to about 45◦. Once this flow pattern was established, it was
very stable over a large range of parameters, with very little noise.

5.5. Anomalous P flow

Co-existing with the periodic P flows, other complex flow regimes were observed
close to the irregular flow. These complex flows developed from a periodic flow which
appeared to be almost identical to the standard P flows. A comparison of the time
series of two period-doubled flows, Pa and Pi, in figures 17 and 20(a), reveals that
Pi is a mirror image Pa through v 7→ −v. The inverted flow, Pi, was found only after
spinning up the experiment from rest, while the standard form was also found at
the same point in parameter space when ramping from the irregular flow or regular
vortices.

While the inversion of the radial velocity does not correspond to a symmetry of
the cylindrical flow, it is part of some symmetry operations under which a shear layer
in a straight channel would be invariant. If the radius of the shear layer is much
larger than its thickness, then the layer could be locally approximated by a straight
layer. Under those circumstance it is possible that some of the symmetries, and with
them symmetric flow types, may be valid for some regions in the parameter space.
During the particle tracking experiments, no anomalous P flow was found, but to test
if any of the possible symmetry operations of the straight channel case would give a
reasonable flow structure in the circular tank, a velocity field from the standard P flow,
as presented in figure 19 was taken, and several symmetry operations were performed
on the eddy field, after the mean azimuthal velocity was subtracted. The following
symmetry operations were tested: (a) (y, v) 7→ −(y, v), (b) (y, u, v) 7→ −(y, u, v), and (c)
(u, v) 7→ −(u, v), where y = r − R is the radial (lateral) distance from the shear layer
centre, and u = U − U and v are the azimuthal and radial velocity components. Of
these three combinations, the last, (u, v) 7→ −(u, v) resulted in the most plausible flow
structure which is shown in figure 21.
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Following from Pi, the inverted flow mPi developed strong fluctuations shown in
figure 20(b). The corresponding power spectra of the periodic and irregular flows are
shown in figure 22. The spectrum of the periodic flow shows the dominant frequency,
its subharmonic and even indications of a period four besides the higher harmonics
above a very small noise level. mPi, on the other hand, shows a much greater noise
level falling off towards higher frequencies akin to a red noise spectrum, as well as
a distinct peak at f = 2.67 × 10−2 Hz or W = 2.05. This frequency, which is 3.73
times larger than the frequency of the long wave (W = 0.55), does not correspond to
an observed drift frequency of another mode and seems therefore to be a temporal
modulation.

While standard SSA analysis of Pi results in the expected slow oscillation in the
leading pair of singular vectors, the corresponding vectors for mPi in figure 23(a) show
a two-frequency oscillation where the phase space of mPi shows a complex phase
portrait of the two frequencies convolved. Instead of a pair of singular vectors with
similar variance, the singular spectrum in figure 23(c) shows four leading eigenvectors,
each containing information from both frequency components. Filtering the slow
oscillation out by using R-SSA with Pi as the contamination signal succeeds in
isolating the fast oscillation: a distinct pair of leading singular vectors is well above
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Figure 20. Time series of radial velocity for (a) anomalous period-doubled case Pi,
and (b) noisy modulated case mPi.
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the calculated noise level as shown in figure 23(d). Figure 23(b) shows the first
singular vector of mPi/P i, in which the fast oscillation is now clearly visible. The
phase portrait of this oscillatory mode recovers a noisy limit cycle similar to that of
nV4 (cf. figure 14). As the singular vector in figure 23(b) shows, the period of the fast
oscillation is 18.7 s, half of the period found in the power spectrum in figure 22.

It appears that this flow is on a solution branch disconnected from the other
solutions, which could be stabilized for a finite range of parameters by virtue of a
near-symmetry with respect to left–right inversion centred on the shear layer. The
standard period-doubled flow does not show the breakdown to a faster modulation
and occurrence of noise, but remains stable for a large range of parameters before
undergoing further bifurcations leading to a slower modulation of the flow structure.

6. Conclusions
We have presented results from a laboratory study of the instability and nonlinear

dynamics of a rotating flow subjected to a horizontal shear. This study has addressed
in some detail the conditions under which the Stewartson layer due to symmetric
forcing at the upper and lower boundaries becomes unstable. Our analysis has
shown that instability sets in at a well defined Reynolds number. This lends further
evidence in support of the validity of the quasi-geostrophic approximation used in
the theoretical study by Niino & Misawa (1984). Even though this approximation
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resolves neither any vertical structure (apart from Ekman layers) nor the E1/3 layer, its
predictions were reproduced remarkably well in the experiments. In contrast to this,
boundary layer approaches, such as Busse (1968) or Hashimoto (1976), did not predict
the existence of a stable axisymmetric flow. It appears that the inclusion of internal
diffusion in the fluid interior is crucial in providing a short-wave cut-off and thus a
lower limit for the growth of perturbations. The marginal stability can be defined by
a critical Reynolds number, Rei,c = 19E−0.03. This Reynolds number is based on the
thickness of the E1/4 Stewartson layer and is a measure of the shear across the layer
(U/L where U = Rω and L = E1/4H) relative to the molecular dissipation (ν/L2).
This suggests that the effect of rotation on the inertial instability of the basic flow
is indirect by concentrating the shear in a layer of thickness E1/4. The experiments
by Rabaud & Couder (1983) on a circular shear layer without strong background
rotation showed a critical Reynolds number (based on H rather than E1/4H , since
they used parameters with E > 1) of Rec ≈ 85–110. Niino & Misawa (1984) and
Solomon et al. (1993) also studied the instability of a jet stream with a similar value
for a critical Reynolds number. Solomon et al. (1993), whose experiments were on
a β-plane, found a small difference of the critical value between co-rotating and
counter-rotating jets due to the β-effect, which is consistent with theoretical results
by Marcus & Lee (1998).

This study is the first to provide firm evidence that the nature of the transition
is that of a supercritical instability through a Hopf bifurcation. The flow structures
emerging from the Hopf bifurcation are travelling waves in the form of a wavy shear
layer together with a string of vortices along the shear layer, where the range of
wavenumbers observed (up to m = 8) is well predicted by quasi-geostrophic theory.
As with the onset of instability, the resulting flow growing from this instability does
not seem to vary strongly with the sign of ω. While this invariance is consistent
with the findings by Rabaud & Couder (1983) and Solomon et al. (1993), it is in
contrast to those of Hide & Titman (1967) who reported flows with wavenumbers
2 or greater only for positive Ro. For Ro < 0, however, they only observed a
unique flow structure which was described as a distorted and displaced ellipsoidal jet
stream which could be consistent with the spatially period-doubled flow structure P
described in § 5.4. The main difference between the studies is that Hide & Titman
placed the differentially rotating disk in the fluid interior at mid-height rather than at
the boundaries. It appears that the sudden jump in the fluid depth across the edge of
the disk may have caused this marked difference of the flow structures between the
different signs of the disk rotation. A recent numerical study by R. Hollerbach (1998,
personal communication) in a spherical shell with a similar depth change across the
shear layer also found a difference between the directions of the relative rotation.
The Taylor–Couette system also shows strong differences between co- and counter-
rotating cylinders (Andereck, Liu & Swinney 1986). One of the primary forces in the
Taylor–Couette system is the centrifugal force which depends crucially on the relative
rotation. The absence of major differences between the signs of the disk rotation in
the present experiment would indicate that centrifugal forces can be neglected in the
initial instability and for a large range of the parameter space explored.

Though there are some differences in the regimes observed for positive and negative
Ro, the general structure of the regime diagram appears to be independent of the
sign of Ro. The lines of mode transitions and the structures of the more complex
flows, M and I , are more regular for positive Ro. In both cases, however, the mode
transitions appear to depend mainly on Ro rather than E. This is not only reflected
by other shear layer experiments, e.g. Hide & Titman (1967), but it is also observed in
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the baroclinic rotating annulus, e.g. Hide & Mason (1975). The principal parameters
in the baroclinic experiment are a thermal Rossby number, Θ, and a Taylor number,
T∝ E−2. A typical regime diagram, such as figure 7 in Hide & Mason (1975), shows
that mode transitions to higher modes are usually found when Θ is decreased.

While secondary instabilities are a common occurrene in both the baroclinic
annulus (e.g. Früh & Read 1997) and in the Taylor–Couette flow, this shear layer
experiment showed only very few indications of secondary instabilities, all restricted to
the lower wavenumbers, m 6 3. The most typical secondary instability of a baroclinic
wave is that of a secondary Hopf bifurcation to a so-called amplitude vacillation,
with further bifurcations predominantly involving homoclinic orbits. Those complex
flows are usually found in the baroclinic annulus before a transition to a lower
wavenumber. Mode transitions in this experiment, however, were not preceded by
bifurcations to chaotic flows, although enhanced levels of noise were observed near
transitions to either lower or higher wavenumbers. No indications were found that
these fluctuations could be a result of low-dimensional nonlinear dynamics. The only
indications of a strong second independent frequency and further bifurcations were
found for low wavenumbers, m 6 2, especially in the modulated regime m and the
spatially period-doubled flow P . The modulated flow could be an amplitude oscilla-
tion of an m = 2 mode or a nonlinear interference of an m = 2 and an m = 3 mode.
These flows, however, and the islands of sudden strong irregular behaviour are still
poorly understood and are the focus of Part 2.
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